

CTSegNet

[image: project]
CTSegNet is a package for end-to-end 3D segmentation workflow for large X-ray tomographic datasets using 2D fully convolutional neural networks (fCNN).

Features

	Command-line interface for deploying 3D segmentation workflow using 2D fCNNs as well training your own Unet-like models with data-augmentation.

	Read/write utilities support tiff series and hdf5 format. The hdf5 implementation exploits chunking to minimize RAM usage in very large (>50 GB) datasets.

	Write your own scripts to test models and visualize segmentation results using the API.

Contribute

	Documentation: https://github.com/aniketkt/CTSegNet/tree/master/doc

	Issue Tracker: https://github.com/aniketkt/CTSegNet/docs/issues

	Source Code: https://github.com/aniketkt/CTSegNet/

Content

	About

	Install

	Usage

	API reference

	Credits

About

The Algorithm

fCNN architecture

CTSegNet deploys unique Unet-like models trained with focal loss to provide accuracy with reduced number of convolutional layers. The methodology and performance metrics are discussed in [].

Here is an example architecture that you can build using the model_utils sub-module in CTSegNet. We will refer to it as Unet-242 because of the 2-4-2 implementation of pooling layers.

[image: project]

What is unique about CTSegNet?

While Unet-based segmentation is now commonplace, it is primarily limited to 2D data since 3D convolutional layers require prohibitively large GPU memory during training. Our approach efficiently exploits 2D fCNNs for 3D segmentation. You can generate multiple 3D masks by slicing along any axis, and choose a patching strategy based on the resolution-to-context trade-off in your CT data. For an fCNN with input/output images sized 512x512, you can make patches in several ways. This a slice drawn from a scan of a gasoline injector along the transverse plane.

[image: project]
An ensemble vote from several 3D segmentations maps yields near voxel accuracy in many cases, where thresholding just won’t work. Here’s an example of a band-like artifact from restricted field-of-view in a CT scan (sagittal plane is shown).

[image: project]
The data_utils.data_io module contains the DataFile class, which enables fast and memory-efficient slicing using hdf5 format so you can visualize and segment 100GB+ datasets from your workstation. With this, you can segment only parts of your data or test models on slices of your data, with a few lines of code. Tiff format is also supported but with limited functionality.

Tell me more

Read our paper at [] or contact me at: atekawade [at] anl [dot] gov

Install

ct_segnet with CLI

To download the entire package with executables, sample model files and config files, clone the master branch and install locally. To download the .h5 model files when cloning, you will need Git LFS [https://github.com/git-lfs/git-lfs/wiki/Installation] installed.

git clone https://github.com/aniketkt/CTSegNet.git
pip install CTSegNet/.

ct_segnet only

To install only ct_segnet modules into your python 3 environment, use pip. For compatibility with tensorflow 1.14, please install ct_segnet 1.16 from the tf-1 branch.

$ pip install git+https://github.com/aniketkt/CTSegNet.git@master#egg=ct_segnet

in a prepared virtualenv or as root for system-wide installation.

Usage

Command-line interface

In addition to the API, CTSegNet provides a command-line interface to perform segmentation and training of new models.Data formats supported are .tiff sequence and hdf5. Example config files are provided in cfg_files/.

TRAIN/TEST: Extract training data from arbitrarily sized CT data and ground-truth pairs:

python bin/make_training_dataset.py -c cfg_files/setup_train.cfg

Build and train several Unet-like fCNN architectures for an input image size of your choice:

python bin/train_fCNN.py -t cfg_files/train.cfg -m cfg_files/models/Unet242.cfg

SEGMENT: An end-to-end 3D segmentation workflow that binarizes 2D images extracted from 3D CT data using the fCNN model, then rebuilds the corresponding 3D segmentation map. The hdf5 version is optimized for low RAM usage in very large (>50 GB) datasets.:

python bin/run_segmenter.py -c cfg_files/setup_seg.cfg

USE HDF5 FORMAT: Re-package your CT data into hdf5 format, with methods to determine optimal chunk size. Although optional, using hdf5 format accelerates read/write time while slicing through your datasets. Set -c as chunk size in MB or chunk shape z,y,x.:

python bin/rw_utils/convert_to_hdf5.py -f my_tiff_folder -o output_file.hdf5 -c 20.0

API reference

CTSegNet Modules:

	seg_utils

	data_io

	train_utils

	viewer

	stats

	models

	losses

seg_utils

CTSegNet is more than a 2D CNN model - it’s a 3D Segmenter that uses 2D CNNs. The set_utils.py defines the Segmenter class that wraps over a keras U-net-like model (defined by models.py), integrating 3D slicing and 2D patching functions to enable the 3D-2D-3D conversations in the segmentation workflow. To slice a 3D volume, manipulations such as 45 deg rotations, orthogonal slicing, patch extraction and stitching are performed.

	
ct_segnet.seg_utils.process_data(p, segmenter, preprocess_func=None, max_patches=None, overlap=None, nprocs=None, rot_angle=0.0, slice_axis=0, crops=None, arr_split=1, arr_split_infer=1)

	Segment a volume of shape (nz, ny, nx). The 2D keras model passes
along either axis (0,1,2), segmenting images with a patch size defined by input
to the model in the segmenter class.

	Parameters

	
	max_patches (tuple) – (my, mx) are # of patches along Y, X in image (ny, nx)

	overlap (tuple or int) – number of overlapping pixels between patches

	nprocs (int) – number of CPU processors for multiprocessing Pool

	arr_split (int) – breakdown chunk into arr_split number of smaller chunks

	slice_axis (int) – (0,1,2); axis along which to draw slices

	cropslist
	list of three tuples; each tuple (start, stop) will define a python slice for the respective axis

	rot_anglefloat
	(degrees) rotate volume around Z axis before slicing along any given axis. Note this is redundant if slice_axis = 0

	nprocsint
	number of CPU processors for multiprocessing Pool

	arr_splitint
	breakdown chunk into arr_split number of smaller chunks

	preprocess_funfunc
	pass a preprocessing function that applies a 2D filter on an image

	
class ct_segnet.seg_utils.Segmenter(model_filename=None, model=None, model_name='unknown', weight_file_name=None, GPU_mem_limit=16.0)

	The Segmenter class wraps over a keras model, integrating 3D slicing and 2D patching functions to enable the 3D-2D-3D conversations in the segmentation workflow.

	model: tf.keras.model
	keras model with input shape = out shape = (ny, nx, 1)

	model_filenamestr
	path to keras model file (e.g. “model_1.h5”)

	model_namestr
	(optional) just a name for the model

	GPU_mem_limitfloat
	max limit of GPU memory to use

	
seg_chunk(p, max_patches=None, overlap=None, nprocs=None, arr_split=1, arr_split_infer=1)

	Segment a volume of shape (nslices, ny, nx). The 2D keras model passes along nslices, segmenting images (ny, nx) with a patch size defined by input to the model

	max_patches: tuple
	(my, mx) are # of patches along Y, X in image (ny, nx)

	overlaptuple or int
	number of overlapping pixels between patches

	nprocsint
	number of CPU processors for multiprocessing Pool

	arr_splitint
	breakdown chunk into arr_split number of smaller chunks

	
seg_image(s, max_patches=None, overlap=None)

	Test the segmenter on arbitrary sized 2D image. This method extracts patches of shape same as the input shape of 2D CNN, segments them and stitches them back to form the original image.

	max_patchestuple
	(my, mx) are # of patches along Y, X in image

	snumpy.array
	greyscale image slice of shape (ny, nx)

	overlaptuple or int
	number of overlapping pixels between patches

	
class ct_segnet.seg_utils.FeatureExtraction2D(max_patches=None, overlap=None, model_filename=None)

	This class converts a 2D image into an n-dimensional vector z

	Parameters

	max_patches (tuple) – (my, mx) are # of patches along Y, X in image

	overlaptuple or int
	number of overlapping pixels between patches

	model: tf.keras.model
	keras model with input shape = out shape = (ny, nx, 1)

	model_filenamestr
	path to keras model file (e.g. “model_1.h5”)

	model_namestr
	(optional) just a name for the model

	
extract_code()

	not implemented

to do:
consider patches are created. How should the code vectors of each patch be converted to singe vector? (mean, median, std?)

	
extract_measurement(img, measurement, **kwargs)

	
	Returns

	measured_features (np.array) – shape (ndims,)

	Parameters

	
	img (np.array) – A 2D numpy array (ny,nx). Could be a tomo slice or projection.

	measurement (func) – function to extract a measurement, e.g. radius, particle centroid, etc.

	
vis_feature(s, measurement, **kwargs)

	This method extracts patches of shape same as the input shape of 2D CNN, measures a feature for each patch’s segmentation map and stitches them back to form a checkered image.

	snumpy.array
	greyscale image slice of shape (ny, nx)

data_io

A memory-efficient interface to slice, read and write CT data. Tiff series and hdf5 data formats are currently supported.

	
class ct_segnet.data_utils.data_io.DataFile(fname, data_tag=None, tiff=False, chunk_shape=None, chunk_size=None, chunked_slice_size=None, d_shape=None, d_type=None, VERBOSITY=1)

	An instance of a DataFile class points to a 3D dataset in a tiff sequence or hdf5 file. The interface includes read/write methods to retrieve the data in several ways (slices, chunks, down-sampled data, etc.)

For setting chunk size in hdf5, either chunk_shape > chunk_size > chunked_slice_size can be input. If two or more are provided, this order is used to select one.

	Parameters

	
	fname (str) – path to hdf5 filename or folder containing tiff sequence

	tiff (bool) – True if fname is path to tiff sequence, else False

	data_tag (str) – dataset name / path in hdf5 file. None if tiff sequence

	VERBOSITY (int) – 0 - print nothing, 1 - important stuff, 2 - print everything

	d_shape (tuple) – shape of dataset; required for non-existent dataset only

	d_type (numpy.dtype) – data type for voxel data; required for non-existent dataset only

	chunk_size (float) – in GB - size of a hyperslab of shape proportional to data shape

	chunked_slice_size (float) – in GB - size of a chunk of some slices along an axis

	chunk_shape (tuple) – shape of hyperslab for hdf5 chunking

	Example

	.. highlight:: python

	.. code-block:: python – from ct_segnet.data_io import DataFile
If fname points to existing hdf5 file
dfile = DataFile(fname, tiff = False, data_tag = “dataset_name”)

read a slice
img = dfile.read_slice(axis = 1, slice_idx = 100)

read a chunk of size 2.0 GB starting at slice_start = 0
vol, s = dfile.read_chunk(axis = 1, slice_start = 0, max_GB = 2.0)

read a chunk between indices [10, 100], [20, 200], [30, 300] along the respective axes
vol = dfile.read_data(slice_3D = [slice(10, 100), slice(20, 200), slice(30,300)])

or just read all the data
vol = dfile.read_full()

	
create_new(overwrite=False)

	For hdf5 - creates an empty dataset in hdf5 and assigns shape, chunk_shape, etc. For tiff folder - checks if there is existing data in folder.

	Parameters

	overwrite (bool) – if True, remove existing data in the path (fname).

	
est_chunking()

	

	
get_slice_sizes()

	

	
get_stats(return_output=False)

	Print some stats about the DataFile (shape, slice size, chunking, etc.)

	
read_chunk(axis=None, slice_start=None, chunk_shape=None, max_GB=10.0, slice_end='', skip_fac=None)

	Read a chunk of data along a given axis.

	Parameters

	
	axis (int) – axis > 0 is not supported for tiff series

	slice_start (int) – start index along axis

	chunk_shape (tuple) – (optional) used if hdf5 has no attribute chunk_shape

	max_GB (float) – maximum size of chunk that’s read. slice_end will be calculated from this.

	slice_end (int) – (optional) used if max_GB is not provided.

	skip_fac (int) – (optional) “step” value as in slice(start, stop, step)

	Returns

	tuple – (data, slice) where data is a 3D numpy array

	
read_data(slice_3D=(slice(None, None, None), slice(None, None, None), slice(None, None, None)))

	Read a block of data. Only supported for hdf5 datasets.

	Parameters

	slice_3D (list) – list of three python slices e.g. [slice(start,stop,step)]*3

	
read_full(skip_fac=None)

	Read the full dataset

	
read_sequence(idxs)

	Read a list of indices idxs along axis 0.

	Parameters

	
	axis (int) – axis 0, 1 or 2

	idxs (list) – list of indices

	
read_slice(axis=None, slice_idx=None)

	Read a slice.

	Parameters

	
	axis (int) – axis 0, 1 or 2

	slice_idx (int) – index of slice along given axis

	
set_verbosity(VERBOSITY)

	

	
show_stats(return_output=False)

	print dataset shape and slice-wise size

	
write_chunk(ch, axis=None, s=None)

	Write a chunk of data along a given axis.

	Parameters

	
	axis (int) – axis > 0 is not supported for tiff series

	s (slice) – python slice(start, stop, step) - step must be None for tiff series

	
write_data(ch, slice_3D=None)

	Write a block of data. Only supported for hdf5 datasets.

	Parameters

	
	ch – 3D numpy array to be saved

	slice_3D (list) – list of three python slices e.g. [slice(start,stop,step)]*3 - must match shape of ch

	
write_full(ch)

	Write the full dataset to filepath.

	Parameters

	ch – 3D numpy array to be saved

	
ct_segnet.data_utils.data_io.Parallelize(ListIn, f, procs=- 1, **kwargs)

	This function packages the “starmap” function in multiprocessing, to allow multiple iterable inputs for the parallelized function.

	Parameters

	
	ListIn (list) – list, each item in the list is a tuple of non-keyworded arguments for f.

	f (func) – function to be parallelized. Signature must not contain any other non-keyworded arguments other than those passed as iterables.

Example:

def multiply(x, y, factor = 1.0):
 return factor*x*y

X = np.linspace(0,1,1000)
Y = np.linspace(1,2,1000)
XY = [(x, Y[i]) for i, x in enumerate(X)] # List of tuples
Z = Parallelize_MultiIn(XY, multiply, factor = 3.0, procs = 8)

Create as many positional arguments as required, but remember all must be packed into a list of tuples.

train_utils

viewer

stats

	A module for estimating
	
	signal-to-noise ratio (SNR) for binarizable datasets.

	accuracy metrics for segmentation maps.

	
ct_segnet.stats.ROC(thresh, true_img=None, seg_img=None)

	Receiver Operating Characteristics (ROC) curve

	Parameters

	
	thresh (float) – threshold value

	true_img (numpy.array) – ground truth segmentation map (ny, nx)

	seg_img (numpy.array) – predicted segmentation map (ny, nx)

	Returns

	tuple – FPR, TPR

	
ct_segnet.stats.calc_SNR(img, seg_img, labels=(0, 1), mask_ratio=None)

	SNR = 1 / s*sqrt(std0^^2 + std1^^2)
where s = 1 / (mu1 - mu0)
mu1, std1 and mu0, std0 are the mean / std values for each of the segmented regions respectively (pix value = 1) and (pix value = 0).
seg_img is used as mask to determine stats in each region.

	Parameters

	
	img (np.array) – raw input image (2D or 3D)

	seg_img (np.array) – segmentation map (2D or 3D)

	labels (tuple) – an ordered list of two label values in the image. The high value is interpreted as the signal and low value is the background.

	mask_ratio (float or None) – If not None, a float in (0,1). The data are cropped such that the voxels / pixels outside the circular mask are ignored.

	Returns

	float – SNR of img w.r.t seg_img

	
ct_segnet.stats.calc_dice_coeff(true_img, seg_img)

	
	Parameters

	
	true_img (np.array) – ground truth segmentation map (ny, nx)

	seg_img (np.array) – predicted segmentation map (ny, nx)

	Returns

	float – Dice coefficient

	
ct_segnet.stats.calc_jac_acc(true_img, seg_img)

	
	Parameters

	
	true_img (np.array) – ground truth segmentation map (ny, nx)

	seg_img (np.array) – predicted segmentation map (ny, nx)

	Returns

	float – Jaccard accuracy or Intersection over Union

	
ct_segnet.stats.fidelity(true_imgs, seg_imgs, tolerance=0.95)

	Fidelity is number of images with IoU > tolerance

	Parameters

	
	tolerance (float) – tolerance (default = 0.95)

	true_imgs (numpy.array) – list of ground truth segmentation maps (nimgs, ny, nx)

	seg_imgs (numpy.array) – list of predicted segmentation maps (nimgs, ny, nx)

	Returns

	float – Fidelity

models

Easily define U-net-like architectures using Keras layers

	
ct_segnet.model_utils.models.build_Unet_flex(img_shape, n_depth=1, n_pools=4, activation='lrelu', batch_norm=True, kern_size=(3, 3), kern_size_upconv=(2, 2), pool_size=(2, 2), dropout_level=1.0, loss='binary_crossentropy', stdinput=True)

	Define your own Unet-like architecture, based on the arguments provided. Checks that the architecture complies with the converging-diverging paths and ensures the output image size is the same as input image size.

	Returns

	a keras model for a U-net-like architecture

	Return type

	tf.Keras.model

	Parameters

	
	img_shape (tuple) – input image shape (ny,nx,1)

	n_depth (int or list) – Option 1: a list of the number of filters in each convolutional layer upstream of each pooling layer. Length must equal number of max pooling layers.

Option 2: an integer that multiplies the values in this list: [16, 32, …]. E.g. n_depth = 2 creates [32, 64, …]

	n_pools (int) – Number of max pooling layers

	activation (str or tf.Keras.layers.Activation) – name of custom activation or Keras activation layer

	batch_norm (bool) – True to insert BN layer after the convolutional layers

	kern_size (list or tuple) – kernel size, e.g. (3,3). Provide a list (length = n_pools) of tuples to apply a different kernel size to each block.

	kern_size_upconv (list or tuple) – kernel size for upconv, e.g. (2,2). Provide a list (length = n_pools) of tuples to apply a different kernel size to each block

	pool_size (list or tuple) – max pool size, e.g. (2,2). Provide a list (length = n_pools) of tuples to apply a different size to each block

	dropout_level (float or list) – Option 1: a list (length = n_pools) of dropout values to apply separately in each block

Option 2: a float (0..1) that multiples the values in this list: [0.1, 0.1, 0.2, 0.2, 0.3]

	loss (str) – The loss function of your choice. The following are implemented:
‘weighted_crossentropy’, ‘focal_loss’, ‘binary_crossentropy’

	stdinput (bool) – If True, the input image will be normalized into [0,1]

	
ct_segnet.model_utils.models.conv_layer(tensor_in, n_filters, kern_size=None, activation=None, kern_init='he_normal', padding='same', dropout=0.1, batch_norm=False)

	Define a block of two convolutional layers

	Returns

	tensor of rank 4 (batch_size, n_rows, n_cols, n_channels)

	Parameters

	
	tensor_in (tensor) – input tensor

	n_filters (int) – number of filters in each convolutional layer

	kern_size (tuple) – kernel size, e.g. (3,3)

	activation (str or tf.Keras.layers.Activation) – name of custom activation or Keras activation layer

	kern_init (str) – kernel initialization method

	padding (str) – type of padding

	dropout (float) – dropout fraction

	batch_norm (bool) – True to insert a BN layer

	
ct_segnet.model_utils.models.insert_activation(tensor_in, activation)

	
	Returns

	tensor of rank 4 (batch_size, n_rows, n_cols, n_channels)

	Parameters

	
	tensor_in (tensor) – input tensor

	activation (str or tf.Keras.layers.Activation) – name of custom activation or Keras activation layer

	
ct_segnet.model_utils.models.pool_layer(tensor_in, n_filters, pool_size, dropout=None, activation=None, batch_norm=False, kern_size=None)

	Define a block of 2 convolutional layer followed by a pooling layer

	Returns

	tensor of rank 4 (batch_size, n_rows, n_cols, n_channels)

	Parameters

	
	tensor_in (tensor) – input tensor

	n_filters (int) – number of filters in each convolutional layer

	pool_size (tuple) – max pooling (2,2)

	dropout (float) – fraction of dropout

	activation (str or tf.Keras.layers.Activation) – name of custom activation or Keras activation layer

	batch_norm (bool) – True to insert a BN layer

	kern_size (tuple) – kernel size for conv layer, e.g. (3,3)

	
ct_segnet.model_utils.models.upconv_layer(tensor_in, concat_tensor, n_filters=None, activation=None, kern_size=None, strides=None, padding='same', batch_norm=False)

	Define an upconvolutional layer and concatenate the output with a conv layer from the contracting path

	Returns

	tensor of rank 4 (batch_size, n_rows, n_cols, n_channels)

	Parameters

	
	tensor_in (tensor) – input tensor

	concat_tensor (tensor) – this will be concatenated to the output of the upconvolutional layer

	n_filters (int) – number of filters in each convolutional layer

	kern_size (tuple) – kernel size for upconv, e.g. (2,2)

	activation (str or tf.Keras.layers.Activation) – name of custom activation or Keras activation layer

	kern_init (str) – kernel initialization method

	strides (tuple) – strides e.g. (2,2)

	padding (str) – type of padding

	batch_norm (bool) – True to insert a BN layer

losses

This module defines some custom loss functions and metrics that are used to train and evaluate a U-net-like tf.Keras.model. This require the input to be a tensor.

Note: Some of these metrics are implemented in ct_segnet.stats to receive numpy.array as inputs.

	
ct_segnet.model_utils.losses.IoU(y_true, y_pred)

	
	Returns

	intersection over union accuracy

	Parameters

	
	y_true (tensor) – Ground truth tensor of shape (batch_size, n_rows, n_cols, n_channels)

	y_pred (tensor) – Predicted tensor of shape (batch_size, n_rows, n_cols, n_channels)

	
ct_segnet.model_utils.losses.acc_ones(y_true, y_pred)

	
	Returns

	accuracy in predicting ones = TP/(TP + FN)

	Parameters

	
	y_true (tensor) – Ground truth tensor of shape (batch_size, n_rows, n_cols, n_channels)

	y_pred (tensor) – Predicted tensor of shape (batch_size, n_rows, n_cols, n_channels)

	
ct_segnet.model_utils.losses.acc_zeros(y_true, y_pred)

	
	Returns

	accuracy in predicting zero values = TN/(TN + FP)

	Parameters

	
	y_true (tensor) – Ground truth tensor of shape (batch_size, n_rows, n_cols, n_channels)

	y_pred (tensor) – Predicted tensor of shape (batch_size, n_rows, n_cols, n_channels)

	
ct_segnet.model_utils.losses.focal_loss(y_true, y_pred)

	
	Returns

	loss value

Focal loss is defined here: https://arxiv.org/abs/1708.02002
Using this provides improved fidelity in unbalanced datasets:
Tekawade et al. https://doi.org/10.1117/12.2540442

	Parameters

	
	y_true (tensor) – Ground truth tensor of shape (batch_size, n_rows, n_cols, n_channels)

	y_pred (tensor) – Predicted tensor of shape (batch_size, n_rows, n_cols, n_channels)

	
ct_segnet.model_utils.losses.my_binary_crossentropy(y_true, y_pred)

	
	Returns

	loss value

This is my own implementation of binary cross-entropy. Nothing special.

	Parameters

	
	y_true (tensor) – Ground truth tensor of shape (batch_size, n_rows, n_cols, n_channels)

	y_pred (tensor) – Predicted tensor of shape (batch_size, n_rows, n_cols, n_channels)

	
ct_segnet.model_utils.losses.weighted_crossentropy(y_true, y_pred)

	
	Returns

	loss value

Weighted cross-entropy allows prioritizing accuracy in a certain class (either 1s or 0s).

	Parameters

	
	y_true (tensor) – Ground truth tensor of shape (batch_size, n_rows, n_cols, n_channels)

	y_pred (tensor) – Predicted tensor of shape (batch_size, n_rows, n_cols, n_channels)

Credits

Citations

We kindly request that you cite the following article [] if you use CTSegNet for your project.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 ct_segnet	

 	
 	
 ct_segnet.data_utils.data_io	

 	
 	
 ct_segnet.data_utils.patch_maker	

 	
 	
 ct_segnet.model_utils.losses	

 	
 	
 ct_segnet.model_utils.models	

 	
 	
 ct_segnet.seg_utils	

 	
 	
 ct_segnet.stats	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | P
 | R
 | S
 | U
 | V
 | W

A

 	
 	acc_ones() (in module ct_segnet.model_utils.losses)

 	
 	acc_zeros() (in module ct_segnet.model_utils.losses)

B

 	
 	build_Unet_flex() (in module ct_segnet.model_utils.models)

C

 	
 	calc_dice_coeff() (in module ct_segnet.stats)

 	calc_jac_acc() (in module ct_segnet.stats)

 	calc_SNR() (in module ct_segnet.stats)

 	conv_layer() (in module ct_segnet.model_utils.models)

 	create_new() (ct_segnet.data_utils.data_io.DataFile method)

 	
 ct_segnet

 	module

 	
 ct_segnet.data_utils.data_io

 	module

 	
 	
 ct_segnet.data_utils.patch_maker

 	module

 	
 ct_segnet.model_utils.losses

 	module

 	
 ct_segnet.model_utils.models

 	module

 	
 ct_segnet.seg_utils

 	module

 	
 ct_segnet.stats

 	module

D

 	
 	DataFile (class in ct_segnet.data_utils.data_io)

E

 	
 	est_chunking() (ct_segnet.data_utils.data_io.DataFile method)

 	
 	extract_code() (ct_segnet.seg_utils.FeatureExtraction2D method)

 	extract_measurement() (ct_segnet.seg_utils.FeatureExtraction2D method)

F

 	
 	FeatureExtraction2D (class in ct_segnet.seg_utils)

 	
 	fidelity() (in module ct_segnet.stats)

 	focal_loss() (in module ct_segnet.model_utils.losses)

G

 	
 	get_slice_sizes() (ct_segnet.data_utils.data_io.DataFile method)

 	
 	get_stats() (ct_segnet.data_utils.data_io.DataFile method)

I

 	
 	insert_activation() (in module ct_segnet.model_utils.models)

 	
 	IoU() (in module ct_segnet.model_utils.losses)

M

 	
 	
 module

 	ct_segnet

 	ct_segnet.data_utils.data_io

 	ct_segnet.data_utils.patch_maker

 	ct_segnet.model_utils.losses

 	ct_segnet.model_utils.models

 	ct_segnet.seg_utils

 	ct_segnet.stats

 	
 	my_binary_crossentropy() (in module ct_segnet.model_utils.losses)

P

 	
 	Parallelize() (in module ct_segnet.data_utils.data_io)

 	
 	pool_layer() (in module ct_segnet.model_utils.models)

 	process_data() (in module ct_segnet.seg_utils)

R

 	
 	read_chunk() (ct_segnet.data_utils.data_io.DataFile method)

 	read_data() (ct_segnet.data_utils.data_io.DataFile method)

 	read_full() (ct_segnet.data_utils.data_io.DataFile method)

 	
 	read_sequence() (ct_segnet.data_utils.data_io.DataFile method)

 	read_slice() (ct_segnet.data_utils.data_io.DataFile method)

 	ROC() (in module ct_segnet.stats)

S

 	
 	seg_chunk() (ct_segnet.seg_utils.Segmenter method)

 	seg_image() (ct_segnet.seg_utils.Segmenter method)

 	
 	Segmenter (class in ct_segnet.seg_utils)

 	set_verbosity() (ct_segnet.data_utils.data_io.DataFile method)

 	show_stats() (ct_segnet.data_utils.data_io.DataFile method)

U

 	
 	upconv_layer() (in module ct_segnet.model_utils.models)

V

 	
 	vis_feature() (ct_segnet.seg_utils.FeatureExtraction2D method)

W

 	
 	weighted_crossentropy() (in module ct_segnet.model_utils.losses)

 	write_chunk() (ct_segnet.data_utils.data_io.DataFile method)

 	
 	write_data() (ct_segnet.data_utils.data_io.DataFile method)

 	write_full() (ct_segnet.data_utils.data_io.DataFile method)

data_augmenter

patch_maker

Created on Fri May 17 13:34:59 2019

@author: atekawade

 _static/minus.png

_static/plus.png

_images/patch_maker.png

_images/project-logo.png
Grayscale CT Volume Segmented Volume

slice on any axis,
make patches

reconstruct from patches

_static/file.png

nav.xhtml

 Table of Contents

 		
 CTSegNet

 		
 About

 		
 The Algorithm

 		
 fCNN architecture

 		
 What is unique about CTSegNet?

 		
 Tell me more

 		
 Install

 		
 ct_segnet with CLI

 		
 ct_segnet only

 		
 Usage

 		
 Command-line interface

 		
 API reference

 		
 seg_utils

 		
 data_io

 		
 train_utils

 		
 viewer

 		
 stats

 		
 models

 		
 losses

 		
 Credits

 		
 Citations

_images/Unet242.png
512x512

operation symbol | hyperparameters (shown in fig.)

3x3 conv, LeakyRelLU

kernel size, stride

pool size
NN S

32 32 up-convolution

max pool

V|e|=> ¥

copy / concatenate

512x512

_images/artifact.png
Grayscale image Threshold Ground truth

